Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1367852

RESUMEN

The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants.


Asunto(s)
Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , Proteínas de la Envoltura de Coronavirus/metabolismo , SARS-CoV-2/patogenicidad , Proteínas de la Matriz Viral/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/virología , Línea Celular , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/inmunología , Proteínas de la Envoltura de Coronavirus/ultraestructura , Cricetinae , Humanos , Microscopía Electrónica de Transmisión , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/ultraestructura , Virión/genética , Virión/inmunología , Virión/metabolismo , Virión/ultraestructura
2.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1276146

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the coronavirus disease (COVID-19), is a part of the $\beta $-Coronaviridae family. The virus contains five major protein classes viz., four structural proteins [nucleocapsid (N), membrane (M), envelop (E) and spike glycoprotein (S)] and replicase polyproteins (R), synthesized as two polyproteins (ORF1a and ORF1ab). Due to the severity of the pandemic, most of the SARS-CoV-2-related research are focused on finding therapeutic solutions. However, studies on the sequences and structure space throughout the evolutionary time frame of viral proteins are limited. Besides, the structural malleability of viral proteins can be directly or indirectly associated with the dysfunctionality of the host cell proteins. This dysfunctionality may lead to comorbidities during the infection and may continue at the post-infection stage. In this regard, we conduct the evolutionary sequence-structure analysis of the viral proteins to evaluate their malleability. Subsequently, intrinsic disorder propensities of these viral proteins have been studied to confirm that the short intrinsically disordered regions play an important role in enhancing the likelihood of the host proteins interacting with the viral proteins. These interactions may result in molecular dysfunctionality, finally leading to different diseases. Based on the host cell proteins, the diseases are divided in two distinct classes: (i) proteins, directly associated with the set of diseases while showing similar activities, and (ii) cytokine storm-mediated pro-inflammation (e.g. acute respiratory distress syndrome, malignancies) and neuroinflammation (e.g. neurodegenerative and neuropsychiatric diseases). Finally, the study unveils that males and postmenopausal females can be more vulnerable to SARS-CoV-2 infection due to the androgen-mediated protein transmembrane serine protease 2.


Asunto(s)
COVID-19/genética , Genoma Viral/genética , Conformación Proteica , SARS-CoV-2/ultraestructura , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/ultraestructura , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/ultraestructura , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Proteinas del Complejo de Replicasa Viral/genética , Proteinas del Complejo de Replicasa Viral/ultraestructura , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/ultraestructura
3.
Nat Commun ; 12(1): 3433, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1261998

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has created global health and economic emergencies. SARS-CoV-2 viruses promote their own spread and virulence by hijacking human proteins, which occurs through viral protein recognition of human targets. To understand the structural basis for SARS-CoV-2 viral-host protein recognition, here we use cryo-electron microscopy (cryo-EM) to determine a complex structure of the human cell junction protein PALS1 and SARS-CoV-2 viral envelope (E) protein. Our reported structure shows that the E protein C-terminal DLLV motif recognizes a pocket formed exclusively by hydrophobic residues from the PDZ and SH3 domains of PALS1. Our structural analysis provides an explanation for the observation that the viral E protein recruits PALS1 from lung epithelial cell junctions. In addition, our structure provides novel targets for peptide- and small-molecule inhibitors that could block the PALS1-E interactions to reduce E-mediated virulence.


Asunto(s)
Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/metabolismo , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Secuencia de Aminoácidos , Proteínas de la Envoltura de Coronavirus/ultraestructura , Microscopía por Crioelectrón , Humanos , Dominios Proteicos , SARS-CoV-2/fisiología , Homología Estructural de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA